Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis
نویسندگان
چکیده
Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiple sclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS.
منابع مشابه
Relationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملCLONING AND SEQUENCING OF A MITOCHONDRIAL AUTOANTIGEN WITH IMMUNOGLOBULIN G FROM PATIENTS WITH MULTIPLE SCLEROSIS
Multiple Sclerosis (MS) is a chronic neurological disease of the central nervous system (CNS), characterised by a cellular immune response in early stages and demyelination of the CNS later. Although the cause of MS is unknown, there is much evidence that points to MS as an autoimmune disease. To test the hypotheses that an Autoantigen is involved in MS, we screened a ?gt11 human foetal spinal ...
متن کاملRepeated Administration of Mercury Accelerates Progression of Multiple Sclerosis through Mitochondrial Dysfunction
Multiple Sclerosis (MS) is a neurodegenerative and autoimmune disease that it’s molecular etiology and factors involving in its progression remains unknown. In this study for evaluation effect of mercuric on progression of MS we investigated the additive effect of mercuric sulfide on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model of MS in C57BL/6 mi...
متن کاملRepeated Administration of Mercury Accelerates Progression of Multiple Sclerosis through Mitochondrial Dysfunction
Multiple Sclerosis (MS) is a neurodegenerative and autoimmune disease that it’s molecular etiology and factors involving in its progression remains unknown. In this study for evaluation effect of mercuric on progression of MS we investigated the additive effect of mercuric sulfide on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model of MS in C57BL/6 mi...
متن کاملSensory-Neural Hearing Loss as an Early Rebound Relapse after Fingolimod Cessation in Multiple Sclerosis
Introduction: Multiple sclerosis (MS) is a lifelong disease of the brain and spinal cord. Fingolimod is an oral drug which modulates the S1P receptor and is used for relapsing remitting form of MS and can causes rebound activity if it is ceased even in a short period of washout time. Case Report: Here, we introduce a young girl, a known case of MS, who developed revers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016